

|                 | Form Number                                     | EXC-01-02-02A    |
|-----------------|-------------------------------------------------|------------------|
| Form:           | Issue Number and Date                           | 2/3/24/2022/2963 |
|                 | Number and Date of Revision or Modification     | 05/12/2022       |
| Course Syllabus | Deans Council Approval Decision Number          | 2/3/24/2023      |
|                 | The Date of the Deans Council Approval Decision | 23/01/2023       |
|                 | Number of Pages                                 | 08               |

| 1.  | Course Title                      | Engineering Mathematics-1                     |  |  |  |  |
|-----|-----------------------------------|-----------------------------------------------|--|--|--|--|
| 2.  | Course Number                     | 0301202                                       |  |  |  |  |
| 3.  | Credit Hours (Theory, Practical)  | 3                                             |  |  |  |  |
| 5.  | Contact Hours (Theory, Practical) | 3                                             |  |  |  |  |
| 4.  | Prerequisites/ Corequisites       | 0301201                                       |  |  |  |  |
| 5.  | Program Title                     | B.S.c.                                        |  |  |  |  |
| 6.  | Program Code                      |                                               |  |  |  |  |
| 7.  | School/ Center                    | Science                                       |  |  |  |  |
| 8.  | Department                        | Mathematics                                   |  |  |  |  |
| 9.  | Course Level                      | Mandatory College requirement                 |  |  |  |  |
| 10. | Year of Study and Semester (s)    | 2 <sup>nd</sup> year, all semesters           |  |  |  |  |
| 11. | Other Department(s) Involved in   |                                               |  |  |  |  |
|     | Teaching the Course               |                                               |  |  |  |  |
| 12. | Main Learning Language            |                                               |  |  |  |  |
| 13. | Learning Types                    | ■Face to face learning □Blended □Fully online |  |  |  |  |
| 14. | Online Platforms(s)               | Moodle Microsoft Teams                        |  |  |  |  |
| 15. | Issuing Date                      | 30/10/2024                                    |  |  |  |  |
| 16. | Revision Date                     | 30/10/2024                                    |  |  |  |  |

### 17. Course Coordinator:

| Name: Mohammed Al-Horani | Contact hours: Sun, Tue, (10-11) |
|--------------------------|----------------------------------|
|                          | Mon, Wed (11:30-12:30)           |
| Office number: 206       | Phone number: 22094              |
| Email: horani@ju.edu.jo  |                                  |



### 18. Other Instructors:

| Name: Shaher Al-Momani    |
|---------------------------|
| Office number: 212        |
| Phone number:             |
| Email: s.momani@ju.edu.jo |
| Contact hours:            |
| Name:                     |
| Office number:            |
| Phone number:             |
| Email:                    |
| Contact hours:            |

#### **19. Course Description:**

Classifications, Solutions of differential equations (first order, second order, higher order, and systems), series solutions, Laplace transform method.

### 20. Program Student Outcomes (SO's):

(To be used in designing the matrix linking the intended learning outcomes of the course with the intended

learning outcomes of the program)

- 1. Identify, formulate, and solve broadly-defined technical or scientific problems by applying knowledge of Mathematics and Science and/or technical topics to areas relevant to the discipline.
- 2. Formulate and design a model, process, procedure or program to meet desired needs.
- **5.** Reflect the impact of technical and/or scientific solutions in economic, environmental, and societal contexts.



# الجامعة الاردنية

### 21. Course Intended Learning Outcomes (CLO's):

(Upon completion of the course, the student will be able to achieve the following intended learning outcomes)

- 1- Master the basic concepts of ordinary differential equation (ODE).
- 2- Select a proper procedure to solve a given ODE
- 3- Model applications in Mechanics
- 4- Find series solutions of 2nd order linear differential equations.
- 5- Find the Laplace (and inverse Laplace) transforms of given functions
- 6- Solve IVPs using Laplace transform
- 7- Solve 2x2 linear system of ODEs

| Course |             | The lear      | ning levels to | be achieved |            |          |
|--------|-------------|---------------|----------------|-------------|------------|----------|
| CLOs   | Remembering | Understanding | Applying       | Analysing   | evaluating | Creating |
| 1      | v           | v             | v              |             |            |          |
| 2      | ٧           | V             |                | v           | V          |          |
| 3      |             | ٧             | v              |             |            |          |
| 4      |             | V             |                |             | V          |          |
| 5      | ٧           | V             | v              |             | V          |          |
| 6      | v           | V             | V              |             | V          |          |
| 7      | V           | V             |                |             | v          |          |



22. The matrix linking the intended learning outcomes of the course with the intended learning outcomes

of the program:

| Program SO's<br>Course CLO's                                                            | SO (1) | SO (2) | SO (3) | SO (4) | SO (5) | SO (6) | SO (7) | SO (8) |
|-----------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| Master the basic concepts of<br>ordinary differential equation<br>(ODE).                | •      | •      |        |        |        |        |        |        |
| Select a proper procedure to<br>solve a given ODE                                       | •      | •      |        |        |        |        |        |        |
| Model applications in Mechanics                                                         | •      | •      |        |        | •      |        |        |        |
| Find series solution of 2nd order linear differential equations.                        | •      | •      |        |        |        |        |        |        |
| Find the Laplace transforms and<br>the inverse Laplace transforms<br>of given functions | •      | •      |        |        |        |        |        |        |
| Solve IVPs using Laplace<br>transform                                                   | •      | •      |        |        |        |        |        |        |
| Solve 2x2 linear system of ODEs                                                         | •      | •      |        |        |        |        |        |        |

### 23. Topic Outline and Schedule:

| Week | Lecture | Topic                   | CLO/s Linked to the Topic | Learning Types<br>(Face to Face(FF)/<br>Blended(BL)/ Fully<br>Online(FO)) | Platform Used | Synchronous / Asynchronous | Evaluation Methods | Learning Resources |
|------|---------|-------------------------|---------------------------|---------------------------------------------------------------------------|---------------|----------------------------|--------------------|--------------------|
|      | 1.1     | Classification of ODEs  | 1                         | FF                                                                        | Teams         | S                          | Exams              | Text<br>Book       |
| 1    | 1.2     | Separable ODEs          | 2                         | FF                                                                        | Teams         | S                          | Exams              | Text<br>Book       |
|      | 1.3     | First order linear ODEs | 2                         | FF                                                                        | Teams         | S                          | Exams              | Text<br>Book       |



# الجامعة الاردنية

|   | 1   |                                                          | 1 | ſ         | 1        |          |          | ,            |
|---|-----|----------------------------------------------------------|---|-----------|----------|----------|----------|--------------|
|   | 2.1 | Bernoulli ODEs                                           | 2 | FF        | Teams    | S        | Exams    | Text<br>Book |
| 2 | 2.2 | Homogeneous first-order ODEs                             | 2 | FF        | Teams    | S        | Exams    | Text         |
|   |     |                                                          |   |           |          |          |          | Book         |
|   | 2.3 | Exact ODEs                                               | 2 | FF        | Teams    | S        | Exams    | Text<br>Book |
|   | 3.1 | Evant ODEc                                               | 2 | CC        | Tooms    | s        | Exams    | Text         |
|   | 3.1 | Exact ODEs                                               | 2 | FF        | Teams    | 3        | EXAILIS  | Book         |
| 3 | 3.2 | Integrating factors                                      | 2 | FF        | Teams    | S        | Exams    | Text         |
|   |     |                                                          |   |           |          |          |          | Book<br>Text |
|   | 3.3 | Integrating factors                                      | 2 | FF        | Teams    | S        | Exams    | Book         |
|   |     |                                                          | 2 |           | <b>T</b> | <u> </u> | <b>F</b> | Text         |
|   | 4.1 | Second-Order ODEs: Basic concepts                        | 2 | FF        | Teams    | S        | Exams    | Book         |
| 4 | 4.2 | Independent Solutions and                                | 2 | FF        | Teams    | S        | Exams    | Text         |
|   |     | Wronskian                                                |   |           |          | -        |          | Book         |
|   | 4.3 | x and y missing                                          | 2 | FF        | Teams    | S        | Exams    | Text<br>Book |
|   |     |                                                          |   |           |          |          |          | Text         |
|   | 5.1 | Reduction of order                                       | 2 | FF        | Teams    | S        | Exams    | Book         |
| 5 | 5.2 | Characteristic equation: distinct and                    | 2 | FF        | Teams    | s        | Exams    | Text         |
| 5 | 5.2 | equal roots                                              | 2 |           | Teanis   | 3        | LAditis  | Book         |
|   | 5.3 | Characteristic equation: complex                         | 2 | FF        | Teams    | S        | Exams    | Text         |
|   |     | roots                                                    |   |           |          |          |          | Book<br>Text |
|   | 6.1 | Cauchy-Euler Equations                                   | 2 | FF        | Teams    | S        | Exams    | Book         |
|   | 6.2 |                                                          | 2 |           | <b>T</b> | <u> </u> | <b>F</b> | Text         |
| 6 | 6.2 | Undetermined Coefficients                                | 2 | FF        | Teams    | S        | Exams    | Book         |
|   | 6.3 | Undetermined Coefficients                                | 2 | FF        | Teams    | S        | Exams    | Text         |
|   |     |                                                          |   |           |          | _        |          | Book         |
|   | 7.1 | Variation of Parameters                                  | 2 | FF        | Teams    | S        | Exams    | Text<br>Book |
|   |     |                                                          |   |           |          |          |          | Text         |
| 7 | 7.2 | Modeling (spring)                                        | 3 | FF        | Teams    | S        | Exams    | Book         |
|   | 7.3 | Higher-Order Homogeneous ODEs                            | 2 | FF        | Teams    | S        | Exams    | Text         |
|   | ,.5 |                                                          |   |           | · curris |          | EXG115   | Book         |
|   | 8.1 | Undetermined Coefficients for                            | 2 | FF        | Teams    | S        | Exams    | Text<br>Rook |
|   |     | Higher-Order ODEs<br>Variation of Parameters for Higher- |   |           |          |          |          | Book<br>Text |
| 8 | 8.2 | Order ODEs                                               | 2 | FF        | Teams    | S        | Exams    | Book         |
|   | 0.2 | Variation of Parameters for Higher-                      | 2 | <b>CC</b> | Teams    | S        | Evama    | Text         |
|   | 8.3 | Order ODEs                                               | 2 | FF        |          |          | Exams    | Book         |
| 9 | 9.1 | System of linear first-order ODEs-                       | 7 | FF        | Teams    | S        | Exams    | Text         |
| _ |     | Introduction                                             |   |           |          | _        |          | Book         |



# الجامعة الاردنية

| r  | 1    | 1                                        |   | 1  | 1        | -        | 1        | 1            |
|----|------|------------------------------------------|---|----|----------|----------|----------|--------------|
|    | 9.2  | Homogeneous 2x2 linear system-           |   |    | Teams    | s        | Exams    | Text         |
|    |      | Complex Eigen Values                     | • |    |          |          |          | Book         |
|    | 9.3  | Homogeneous 2x2 linear system-           | 7 | FF | Teams    | s        | Exams    | Text         |
|    | 5.5  | Distinct Eigen Values                    | - |    |          |          |          | Book         |
|    | 10.1 | Homogeneous 2x2 linear system-           | 7 | FF | Teams    | S        | Exams    | Text         |
|    | 10.1 | Equal Eigen Values                       | , |    | reams    | 5        | Exams    | Book         |
|    | 10.2 | Nonhomogenous Linear system-             |   | FF | Teams    | S        | Exams    | Text         |
| 10 | 10   | Undetermined Coefficients                | 7 | ГГ | Teams    | 5        | LXams    | Book         |
|    | 10.3 | Nonhomogenous Linear system-             | 7 | FF | Teams    | S        | Evame    | Text         |
|    | 10.5 | Undetermined Coefficients                | / |    | Teams    | 3        | Exams    | Book         |
|    |      | Nonhomogenous Linear system-             | 7 |    | <b>T</b> | <u> </u> | <b>F</b> | Text         |
|    | 11.1 | Variation of Parameters                  | 7 | FF | Teams    | S        | Exams    | Book         |
|    |      |                                          |   |    | _        | _        | _        | Text         |
| 11 | 11.2 | Review of Power Series                   | 4 | FF | Teams    | S        | Exams    | Book         |
|    | 11.2 | Power Series Solution about Ordinary     |   |    | -        |          | _        | Text         |
|    | 11.3 | Points                                   | 4 | FF | Teams    | S        | Exams    | Book         |
|    |      | Power Series Solution about Ordinary     |   |    | _        |          | _        | Text         |
|    | 12.1 | Points                                   | 4 | FF | Teams    | S        | Exams    | Book         |
|    |      |                                          |   |    |          |          |          | Text         |
| 12 | 12.2 | Regular Singular Points (classification) | 4 | FF | Teams    | S        | Exams    | Book         |
|    |      | Solutions about regular singular         | 4 | FF | Teams    | S        | Exams    | Text         |
|    | 12.3 | points                                   |   |    |          |          |          | Book         |
|    |      | Solutions about regular singular         |   |    |          |          |          | Text         |
|    | 13.1 | points                                   | 4 | FF | Teams    | S        | Exams    | Book         |
|    |      | Laplace Transform-Definitions and        |   |    |          |          |          | Text         |
| 13 | 13.2 | basic concepts                           | 5 | FF | Teams    | S        | Exams    | Book         |
|    |      |                                          |   |    |          |          |          | Text         |
|    | 13.3 | Inverse Laplace Transform                | 5 | FF | Teams    | S        | Exams    | Book         |
|    |      |                                          |   |    |          |          |          | Text         |
|    | 14.1 | Inverse Laplace Transform                | 5 | FF | Teams    | S        | Exams    | Book         |
|    |      |                                          |   |    |          |          |          | Text         |
| 14 | 14.2 | Unit Step Function                       | 5 | FF | Teams    | S        | Exams    | Book         |
|    |      |                                          |   |    |          |          |          |              |
|    | 14.3 | Dirac's Delta Function                   | 5 | FF | Teams    | S        | Exams    | Text         |
|    |      |                                          |   |    |          |          |          | Book         |
|    | 15.1 | Transforms of derivatives and            | 5 | FF | Teams    | S        | Exams    | Text         |
|    |      | integrals                                |   |    |          |          |          | Book         |
|    | 15.2 | Solutions(using Laplace) of linear       | 6 | FF | Teams    | S        | Fyame    | Text         |
| 15 | 13.2 | ODEs                                     | 6 |    | reallis  | 3        | Exams    | Book         |
|    |      | Solutions(using Laplace) of system of    |   |    |          |          |          | Toyt         |
|    | 15.3 | 2x2 linear ODEs                          | 6 | FF | Teams    | S        | Exams    | Text<br>Rook |
|    |      |                                          |   |    |          |          |          | Book         |



### 24. Evaluation Methods:

Opportunities to demonstrate achievement of the CLOs are provided through the following assessment methods and requirements:

| Evaluation Activity | Mark | Topic(s)  | CLO/s Linked to<br>the Evaluation<br>activity | Period (Week)         | Platform  |
|---------------------|------|-----------|-----------------------------------------------|-----------------------|-----------|
| First Exam          | 20   | Chap 1+2  | 1,2                                           | 7 <sup>th</sup> weak  | On campus |
| Mid Term            | 30   | Chap 3 +4 | 1,2,5                                         | 11 <sup>th</sup> weak | On campus |
| Final Exam          | 50   | Chap 1-6  | 1,2,5                                         | 16 <sup>th</sup> weak | On campus |

### 25. Course Requirements:

Each student must have: - Computer - Account on Microsoft Teams

### 26. Course Policies:

Class attendance of students at the beginning of the lecture is recoded. Assignment is given to the students at regular intervals for them to solve and submit. Late or no submission of assignments carries penalties or loss of grade points. Absences recorded in each lecture with making excuses, if any. Exiting during the lecture since Formal justification or excuse forces. Mobile phone use in the classroom is Forbidden.



### 27. References:

A- Required book (s), assigned reading and audio-visuals:

Advanced Engineering Mathematics, E. Kreyszig, 10<sup>th</sup> edition.

- B- Recommended books, materials, and media:
  - 1) Advanced Engineering Mathematics, Dennis G. Zill and Warren S. Wright, 5th edition.
  - 2) Advanced Engineering Mathematics, K. A. Stroud and Dexter J. Booth, 5th edition

### 28. Additional information:

| Name of the Instructor or the Course Coordinator:                   | Signature: | Date:      |
|---------------------------------------------------------------------|------------|------------|
| Prof. Mohammed Al-Horani                                            |            | 03-10-2024 |
| Name of the Head of Quality Assurance Committee/ Department:        | Signature: | Date:      |
| Prof. Manal Ghanem                                                  |            |            |
| Name of the Head of Department:                                     | Signature: | Date:      |
| Prof. Baha Alzalg                                                   |            |            |
| Name of the Head of Quality Assurance Committee/ School of Science: | Signature: | Date:      |
| Prof. Emad A. Abuosba                                               |            |            |
| Name of the Dean or the Director:                                   | Signature: | Date:      |
| Prof. Mahmoud I. Jaghoub                                            |            |            |